Sign In | Join Free | My portofva.com |
|
Brand Name : TOB Ceramic Bearings
Certification : ISO 16949
Place of Origin : China
MOQ : negotiated
Price : negotiated
Payment Terms : T/T
Supply Ability : negotiated
Delivery Time : negotiated
Packaging Details : Cartons or Pallets
Material : ZrO2
Density : 6.0 g/cm3
Material of Rings & Balls : Full ZrO2 ceramic material
HV Hardness : 1300 HRC
Coefficient of expansion : 1.50 10^-6/℃
The highest temperature : 500℃
Full Complement Balls Of ZrO2 Ceramic Bearings, Full Ceramic Bearings
Full Ceramic Bearings of full complement balls of ZrO2 material has an add-ball gap on its side. Because using no cage design, Full Complement Balls Of ZrO2 Ceramic Bearings is able to install more ceramic balls than the standard construction, so the heavier radial load ability could be increased more. In addition, to avoid the limited of the cage material, Full Complement Balls Of ZrO2 Ceramic Bearings has more corrosion resistance and higher temperature application than the full ceramic bearing of ceramic cage. This series of Full Complement Balls Of ZrO2 Ceramic Bearings is not for high-speed circumgyration, so the side with gap shouldn’t be installed on enduring axial load side. As there are add-balls gaps in the inner and outer rings, Full Complement Balls Of ZrO2 Ceramic Bearings couldn’t be used in more axial load application. The highest temperature of recommendation is 500℃.
Comparison of bearing material technical data | ||||||
Technical data | unit | GCr15 | 9Cr18 | Si3N4 | AL203 | ZrO2 |
Density | g/cm³ | 7.8 | 7.9 | 3.2 | 3.95 | 6 |
a Coefficient of expansion | 10^-6/℃ | 11 | 17 | 3.2 | 9.1 | 10.5 |
E modulus of elasticity | Gpa | 208 | 200 | 320 | 380 | 210 |
μ Poisson ratio | 0.3 | 0.3 | 0.26 | 0.27 | 0.3 | |
HV Hardness | 800 | 700 | 1700 | 1800 | 1300 | |
δ Flexural strength | Mpa | 2400 | 2600 | 900 | 220 | 1000 |
δ Compressive Strength | MPa | 2000 | 1500 | 3500 | ||
Kc Impact strength | Nm/cm² | 20 | 25 | 7 | 3.5 | 11 |
λ Thermal conductivity | W/mk | 30-40 | 15 | 3.5 | 25 | 2.5 |
Ω Specific resistivity | mm²/m | 1 | 0.75 | 10^18 | 10^8 | 10^5 |
Specific heat | J/KgK | 450 | 450 | 800 | 880 | 400 |
Application temperature | ℃ | 120 | 150 | 1000 | 1850 | 800 |
Anti-corrossion | No | poor | Good | Good | Good | |
Cycle stress | 10*10^6 | 10*10^6 | 50*10^6 | 30*10^6 | 50*10^6 | |
Destroy model | peel | peel | peel | fracture | peel/fracture | |
Anti-magnetism | Yes | Yes | No | No | No | |
Dimension stability | bad | poor | Good | Good | Good | |
Insulate properties | No insulation | No insulation | Good | Good | Good | |
Basic properties of staple engineer plastic | ||||||||
Material | HDPE | PP | POM | PA66 | PVDF | PPS | PTFE | PEEK |
Long-time working temp. | 90 | 100 | 110 | 100 | 150 | 230 | 260 | 280 |
Density | g/cm3 | 0.91 | 1.42 | 1.14 | 1.77 | 1.35 | 2.18 | 1.32 |
Ball indentation hardness | 50 | 80 | 170 | 170 | 80 | 190 | 30 | |
Tensile stress | 25 | 30 | 70 | 80 | 50 | 75 | 25 | 95 |
Sliding friction coefficient | 0.29 | 0.3 | 0.34 | 0.35-0.42 | 0.3 | 0.08-0.1 | 0.3-0.38 | |
Melted temperature | 130 | 165 | 175 | 260 | 172 | 280 | 327 | 343 |
Short-time highest application temperature | 90 | 140 | 150 | 170 | 150 | 260 | 260 | 300 |
Coet of Inear expansion (10^-5/K) | 13-15 | 17 | 10 | 8 | 13 | 5 | 12 | 5 |
Dielectric constant at 1 Mhz(10^6HZ) | 2.4 | 2.25 | 3.7 | 3.6-5 | 8 | 2.1 | 3.2-3.3 | |
Volume resisrivity (Ω·cm) | >10^15 | >10^24 | >10^14 | 10^13 | 10^12 | >10^13 | 10^14 | 10^13 |
flammability UL94 | + | + | - | (+) | (+) | - | + | + |
Anti-weathering | - | - | - | - | - | - | + | - |
Note: + =resistant; (+) =partly resistant; - =non-resistant |
![]() |
Full Ceramic Ball Bearings ZrO2 Full Ceramic Bearings 1300 HRC Images |